OFFSET
1,4
COMMENTS
I.e., number of primes p such that 2^n < p < (2^n + 2^(n-1)).
Ratio a(n)/A036378(n) converges as follows: 0, 0.5, 0.5, 0.6, 0.571429, 0.461538, 0.521739, 0.511628, 0.506667, 0.510949, 0.509804, 0.510776, 0.505734, 0.511787, 0.507921, 0.507444, 0.507303, 0.506866, 0.506173, 0.506115, 0.505487, 0.505395, 0.505318, 0.504951, 0.504786, 0.504588, 0.504437, 0.504301, 0.50415, 0.504016, 0.503887, 0.503763, 0.503654
Ratio a(n)/A095766(n) converges as follows: 0, 1, 1, 1.5, 1.333333, 0.857143, 1.090909, 1.047619, 1.027027, 1.044776, 1.04, 1.044053, 1.023202, 1.048285, 1.032193, 1.030228, 1.029645, 1.027847, 1.025001, 1.024764, 1.022191, 1.021815, 1.021501, 1.020003, 1.019331, 1.01852, 1.017908, 1.017353, 1.016737, 1.016195, 1.015669, 1.015164, 1.014723
LINKS
EXAMPLE
Table showing the derivation of the initial terms:
n 2^n+1 2^(n+1) a(n) primes starting '10' in binary
1 3 4 0 -
2 5 8 1 5 = 101_2
3 9 16 1 11 = 1011_2
4 17 32 3 17 = 10001_2, 19 = 10011_2, 23 = 10111_2
MATHEMATICA
a[n_] := PrimePi[2^n + 2^(n - 1) - 1] - PrimePi[2^n];
Array[a, 35] (* Robert G. Wilson v, Jan 24 2006 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 12 2004
EXTENSIONS
a(34) and a(35) from Robert G. Wilson v, Jan 24 2006
Edited, restoring meaning of name, by Peter Munn, Jun 27 2023
STATUS
approved