login
A095765
Number of primes in range [2^n+1, 2^(n+1)] whose binary expansion begins '10' (A080165).
3
0, 1, 1, 3, 4, 6, 12, 22, 38, 70, 130, 237, 441, 825, 1539, 2897, 5453, 10335, 19556, 37243, 70938, 135555, 259586, 497790, 956126, 1839597, 3544827, 6839282, 13212389, 25552386, 49472951, 95883938, 186011076, 361177503, 701906519
OFFSET
1,4
COMMENTS
I.e., number of primes p such that 2^n < p < (2^n + 2^(n-1)).
Ratio a(n)/A036378(n) converges as follows: 0, 0.5, 0.5, 0.6, 0.571429, 0.461538, 0.521739, 0.511628, 0.506667, 0.510949, 0.509804, 0.510776, 0.505734, 0.511787, 0.507921, 0.507444, 0.507303, 0.506866, 0.506173, 0.506115, 0.505487, 0.505395, 0.505318, 0.504951, 0.504786, 0.504588, 0.504437, 0.504301, 0.50415, 0.504016, 0.503887, 0.503763, 0.503654
Ratio a(n)/A095766(n) converges as follows: 0, 1, 1, 1.5, 1.333333, 0.857143, 1.090909, 1.047619, 1.027027, 1.044776, 1.04, 1.044053, 1.023202, 1.048285, 1.032193, 1.030228, 1.029645, 1.027847, 1.025001, 1.024764, 1.022191, 1.021815, 1.021501, 1.020003, 1.019331, 1.01852, 1.017908, 1.017353, 1.016737, 1.016195, 1.015669, 1.015164, 1.014723
I think this explains also the bias present in ratios shown at A095297, A095298, etc.
FORMULA
a(n) = A036378(n)-A095766(n).
EXAMPLE
Table showing the derivation of the initial terms:
n 2^n+1 2^(n+1) a(n) primes starting '10' in binary
1 3 4 0 -
2 5 8 1 5 = 101_2
3 9 16 1 11 = 1011_2
4 17 32 3 17 = 10001_2, 19 = 10011_2, 23 = 10111_2
MATHEMATICA
a[n_] := PrimePi[2^n + 2^(n - 1) - 1] - PrimePi[2^n];
Array[a, 35] (* Robert G. Wilson v, Jan 24 2006 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 12 2004
EXTENSIONS
a(34) and a(35) from Robert G. Wilson v, Jan 24 2006
Edited, restoring meaning of name, by Peter Munn, Jun 27 2023
STATUS
approved