login
A095665
Tenth column (m=9) of (1,3)-Pascal triangle A095660.
2
3, 28, 145, 550, 1705, 4576, 11011, 24310, 50050, 97240, 179894, 319124, 545870, 904400, 1456730, 2288132, 3513917, 5287700, 7811375, 11347050, 16231215, 22891440, 31865925, 43826250, 59603700, 80219568, 106919868, 141214920
OFFSET
0,1
COMMENTS
If Y is a 3-subset of an n-set X then, for n>=11, a(n-11) is the number of 9-subsets of X having at most one element in common with Y. - Milan Janjic, Nov 23 2007
LINKS
Index entries for linear recurrences with constant coefficients, signature (10, -45, 120, -210, 252, -210, 120, -45, 10, -1).
FORMULA
a(n)= binomial(n+8, 8)*(n+27)/9 = 3*b(n)-2*b(n-1), with b(n):=binomial(n+9, 9); cf. A000582.
G.f.: (3-2*x)/(1-x)^10.
MATHEMATICA
Table[Binomial[n+8, 8] (n+27)/9, {n, 0, 30}] (* or *) LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {3, 28, 145, 550, 1705, 4576, 11011, 24310, 50050, 97240}, 30] (* Harvey P. Dale, Oct 13 2017 *)
CROSSREFS
Ninth column: A095663.
Sequence in context: A053132 A316390 A048367 * A145346 A184440 A012762
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jun 11 2004
STATUS
approved