login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095190
Doubled Thue-Morse sequence: a(2n) = A010060(n), a(2n+1) = A010060(n).
7
0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1
OFFSET
0,1
COMMENTS
The A010060 sequence replacing 0 with 0,0 and 1 with 1,1.
Let n = Sum(c(k)*2^k), c(k) = 0,1, be the binary form of n, n = Sum(d(k)*3^k), d(k) = 0,1,2, the ternary form, n = Sum(e(k)*5^k), e(k) = 0,1,2,3,4, the base 5 form. Then a(n) = Sum(c(k)+d(k)) mod 2 = Sum(c(k)+e(k)) mod 2.
LINKS
Claude Lenormand, Deux transformations sur les mots, Preprint, 5 pages, Nov 17 2003. Apparently unpublished. This is a scanned copy of the version that the author sent to me in 2003. - N. J. A. Sloane, Sep 09 2018. See page 2 for a different construction of this same sequence.
F. Mignosi, A. Restivo, and M. Sciortino, Words and forbidden factors, WORDS (Rouen, 1999). Theoret. Comput. Sci. 273 (2002), no. 1-2, 99--117. MR1872445 (2002m:68096). [N. J. A. Sloane, Jul 10 2012]
FORMULA
a(n) = A096273(n) mod 2. - Benoit Cloitre, Jun 29 2004
a(n) = mod(A000120(floor(n/2)), 2) = mod(A010060(floor(n/2)), 2). - Paul Barry, Jan 07 2005
a(n) = mod(-1 + Sum_{k=0..n} mod(C(n, 2k), 2), 3). - Paul Barry, Jan 14 2005
a(n) = mod(log_2(Sum_{k=0..n} mod(C(n, 2k),2)),2). - Paul Barry, Jun 12 2006
EXAMPLE
The Thue-Morse sequence is: 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 ... so a(n) = 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 ...
MATHEMATICA
a[n_] := Mod[DigitCount[Floor[n/2], 2, 1], 2]; Array[a, 100, 0] (* Amiram Eldar, Jul 28 2023 *)
PROG
(PARI) a(n)=hammingweight(n\2)%2 \\ Charles R Greathouse IV, May 08 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Miklos Kristof and Peter Boros, Jun 21 2004
STATUS
approved