%I #9 Nov 14 2019 08:59:48
%S 3,5,11,23,53,307,769,5039,13049,603667,1578823,10810469,427860443429,
%T 16944504081930151,31525215457325198354227
%N Primes of the form F(n)*F(n+1)+F(n+2).
%C Excluding the term a(4)=23, primes p such that p(n) is not a sum of two squares but p(n+1) is a sum of two squares.
%F 5 is in the sequence because F(2)*F(3)+F(4) = 1*2+3=5.
%F 11 is in because F(3)*F(4)+F(5) = 2*3+5 = 11
%F 23 is in because F(4)*F(5)+F(6) = 3*5+8 = 23
%F A000040 INTERSECT A305412. - _R. J. Mathar_, Nov 14 2019
%o (PARI) lista(nn) = {for (n=1, nn, if (isprime(p=fibonacci(n)*fibonacci(n+1) +fibonacci(n+2)), print1(p, ", ")););} \\ _Michel Marcus_, Jun 03 2013
%K nonn
%O 1,1
%A _Giovanni Teofilatto_, Jun 11 2004
%E More terms from _Michel Marcus_, Jun 03 2013