login
A094713
Number of ways that prime(n) can be represented as a^2+b^2+c^2 with c >= b >= a > 0.
3
0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 2, 1, 0, 1, 2, 1, 1, 0, 1, 0, 2, 3, 1, 3, 0, 2, 1, 2, 0, 3, 2, 2, 3, 0, 1, 1, 0, 3, 3, 2, 0, 1, 2, 0, 2, 0, 3, 2, 3, 0, 3, 4, 4, 0, 5, 0, 1, 5, 2, 4, 2, 0, 2, 2, 2, 2, 3, 3, 4, 0, 0, 2, 2, 0, 5, 1, 5, 4, 5, 2, 0, 3, 0, 3, 5, 2, 7, 0, 4, 0, 0, 5, 2, 0, 7, 8, 3, 2, 2, 4, 5, 8, 3
OFFSET
1,13
EXAMPLE
a(13) = 2 because prime(13) = 41 = 1+4+36 = 9+16+16.
MATHEMATICA
lim=25; pLst=Table[0, {PrimePi[lim^2]}]; Do[n=a^2+b^2+c^2; If[n<lim^2 && PrimeQ[n], pLst[[PrimePi[n]]]++ ], {a, lim}, {b, a, Sqrt[lim^2-a^2]}, {c, b, Sqrt[lim^2-a^2-b^2]}; pLst
Table[Count[PowersRepresentations[Prime[n], 3, 2], _?(Min[#]>0&)], {n, 110}] (* Harvey P. Dale, Feb 17 2011 *)
CROSSREFS
Cf. A085317 (primes that are the sum of three positive squares), A094712 (primes that are not the sum of three positive squares), A094714 (least prime having exactly n representations as the sum of three positive squares).
Sequence in context: A194514 A324667 A258260 * A123517 A178948 A203827
KEYWORD
nonn
AUTHOR
T. D. Noe, May 21 2004
STATUS
approved