login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094706
Convolution of Pell(n) and 2^n.
8
0, 1, 4, 13, 38, 105, 280, 729, 1866, 4717, 11812, 29365, 72590, 178641, 438064, 1071153, 2613138, 6362965, 15470140, 37565389, 91125206, 220864377, 534951112, 1294960905, 3133261530, 7578261181, 18323338324, 44292046693, 107041649438
OFFSET
0,3
LINKS
S. Falcon, On The Generating Functions of the Powers of the K-Fibonacci Numbers, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675.
FORMULA
G.f.: x/((1-2*x-x^2)*(1-2*x)).
a(n) = Sum_{k=0..n} ((1+sqrt(2))^n - (1-sqrt(2))^n)/(2*sqrt(2))*2^(n-k).
a(n) = (1 + 3*sqrt(2)/4)*(1 + sqrt(2))^n + (1 - 3*sqrt(2)/4)*(1-sqrt(2))^n - 2^(n+1).
a(n) = 4*a(n-1) - 3*a(n-2) - 2*a(n-3).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k+1)*2^(n-2k-1);
a(n) = Sum_{k=0..n} binomial(k, n-k+1)*2^k*(1/2)^(n-k+1). - Paul Barry, Oct 07 2004
a(n) = sum of n-th row in A101164 = A000129(n) - A000079(n). - Reinhard Zumkeller, Dec 03 2004
a(n) = A000129(n+2) - 2^(n+1). - R. J. Mathar, Jan 29 2012
a(n) = 2*a(n-1) + A000129(n), with a(0) = 0, a(1) = 1. - G. C. Greubel, Sep 20 2021
MATHEMATICA
LinearRecurrence[{4, -3, -2}, {0, 1, 4}, 40] (* Vincenzo Librandi, Jun 24 2012 *)
PROG
(Magma) I:=[0, 1, 4]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-2*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 24 2012
(Sage) [lucas_number1(n+2, 2, -1) - 2^(n+1) for n in (0..30)] # G. C. Greubel, Sep 16 2021
CROSSREFS
Cf. A000079, A000129 (Pell numbers), A101164, A255494.
Sequence in context: A181527 A049611 A084851 * A325927 A056014 A247287
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 21 2004
STATUS
approved