login
A094686
A Fibonacci convolution.
14
1, 0, 1, 2, 2, 4, 7, 10, 17, 28, 44, 72, 117, 188, 305, 494, 798, 1292, 2091, 3382, 5473, 8856, 14328, 23184, 37513, 60696, 98209, 158906, 257114, 416020, 673135, 1089154, 1762289, 2851444, 4613732, 7465176, 12078909, 19544084, 31622993, 51167078
OFFSET
0,4
COMMENTS
Convolution of A000045 and A049347.
Diagonal sums of number triangle A116088. - Paul Barry, Feb 04 2006
Let (b(n)) be the p-INVERT of (1,1,0,0,0,0,0,0,...) using p(S) = 1 - S^2; then b(n) = a(n+1) for n >=0. See A292324. - Clark Kimberling, Sep 15 2017
LINKS
Elena Barcucci, Antonio Bernini, Stefano Bilotta, and Renzo Pinzani, Non-overlapping matrices, arXiv:1601.07723 [cs.DM], 2016 (see 1st column of Table 1 p. 8).
Stefano Bilotta, Variable-length Non-overlapping Codes, arXiv preprint arXiv:1605.03785 [cs.IT], 2016 [See Table 2].
Joshua P. Bowman, Compositions with an Odd Number of Parts, and Other Congruences, J. Int. Seq (2024) Vol. 27, Art. 24.3.6. See p. 19.
David Broadhurst, Multiple Deligne values: a data mine with empirically tamed denominators, arXiv:1409.7204 [hep-th], 2014 (see p. 10).
Leonard Rozendaal, Pisano word, tesselation, plane-filling fractal, Preprint, 2017.
FORMULA
G.f.: 1/((1-x-x^2)*(1+x+x^2)).
a(n) = 2*sqrt(3)*Sum_{k=0..n} Fibonacci(k+1)*cos((4*(n-k)+1)*Pi/6)/3.
a(n) = a(n-2) + 2*a(n-3) + a(n-4).
From Paul Barry, Jan 13 2005
a(n) = A005252(n) - (-cos((2*n+1)*Pi/3)/2 - sqrt(3)*sin((2*n+1)*Pi/3)/6 + sqrt(3)*cos(Pi*n/3+Pi/6)/6 + sin((2*n+1)*Pi/6)/2).
a(n) = Sum_{k=0..floor(n/2)} if(mod(n-k, 2)=0, binomial(n-k, k), 0).
a(n) = A093040(n-1) - Fibonacci(n). (End)
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*(1+(-1)^(n-k))/2. - Paul Barry, Sep 09 2005
From Paul Barry, Feb 04 2006: (Start)
a(n) = Sum_{k=0..floor(n/2)} C(2*k, n-2*k).
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*C(3*k,n-k)/C(3*k,k). (End)
2*a(n) = A000045(n+1) + A049347(n). - R. J. Mathar, Feb 13 2020
a(n) = (1/2)*(A000045(n+1) + A049347(n)). - G. C. Greubel, Feb 09 2023
MATHEMATICA
LinearRecurrence[{0, 1, 2, 1}, {1, 0, 1, 2}, 40] (* Jean-François Alcover, Sep 21 2017 *)
PROG
(PARI) Vec(1/((1-x-x^2)*(1+x+x^2)) + O(x^50)) \\ Michel Marcus, Sep 27 2014
(Magma) [(Fibonacci(n+1) +((n+2) mod 3) -1)/2: n in [0..40]]; // G. C. Greubel, Feb 09 2023
(SageMath) [(fibonacci(n+1) + (n+2)%3 - 1)/2 for n in range(41)] # G. C. Greubel, Feb 09 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 19 2004
STATUS
approved