login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094624
Expansion of g.f. x*(1+11*x+x^2)/((1-x)*(1+x)*(1-10*x^2)).
4
0, 1, 11, 12, 121, 122, 1221, 1222, 12221, 12222, 122221, 122222, 1222221, 1222222, 12222221, 12222222, 122222221, 122222222, 1222222221, 1222222222, 12222222221, 12222222222, 122222222221, 122222222222, 1222222222221, 1222222222222, 12222222222221
OFFSET
0,3
COMMENTS
Previous name: "Sequence whose n-th term digits sum to n."
n-th term digits are reversals of A094623(n).
FORMULA
a(n) = 10^(n/2)*(11/18 + 11*sqrt(10)/180 - (11*sqrt(10)/180 - 11/18)(-1)^n) - 13/18 - (-1)^n/2.
From Colin Barker, Dec 01 2015: (Start)
a(n) = 11*a(n-2) - 10*a(n-4) for n > 3.
G.f.: x*(1+11*x+x^2) / ((1-x)*(1+x)*(1-10*x^2)). (End)
E.g.f.: (110*(cosh(sqrt(10)*x) - cosh(x)) + 11*sqrt(10)*sinh(sqrt(10)*x) - 20*sinh(x))/90. - Stefano Spezia, Feb 21 2024
MATHEMATICA
LinearRecurrence[{0, 11, 0, -10}, {0, 1, 11, 12}, 30] (* Paolo Xausa, Feb 22 2024 *)
PROG
(PARI) concat(0, Vec(x*(1+11*x+x^2)/((1-x)*(1+x)*(1-10*x^2)) + O(x^40))) \\ Colin Barker, Dec 01 2015
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Paul Barry, May 15 2004
STATUS
approved