login
A094603
a(n) is the length of the maximal sequence of rightmost black cells in the n-th row of Rule 30 (begun from an initial black cell).
5
1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 9, 1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 15, 1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 9, 1, 3, 1, 4, 1, 3, 1, 6, 1
OFFSET
1,2
COMMENTS
New numbers (A094604) in the sequence occur at positions 2^m.
REFERENCES
Wolfram, Stephen. A New Kind of Science, Wolfram Media, 2002.
LINKS
Eric Rowland, Local nested structure in rule 30, Complex Systems 16 (2006) 239-258.
Eric Weisstein's World of Mathematics, Rule 30
FORMULA
Conjecture: a(n) = A094604(A007814(n)). - Alan Michael Gómez Calderón, Feb 17 2023
EXAMPLE
From Michael De Vlieger, Oct 06 2015: (Start)
First 12 rows, replacing "0" with ".", ignoring "0" outside of range of 1's, for better visibility of ON cells, the number of contiguous rightmost black cells in each row appears at left:
1 1
3 1 1 1
1 1 1 . . 1
4 1 1 . 1 1 1 1
1 1 1 . . 1 . . . 1
3 1 1 . 1 1 1 1 . 1 1 1
1 1 1 . . 1 . . . . 1 . . 1
6 1 1 . 1 1 1 1 . . 1 1 1 1 1 1
1 1 1 . . 1 . . . 1 1 1 . . . . . 1
3 1 1 . 1 1 1 1 . 1 1 . . 1 . . . 1 1 1
1 1 1 . . 1 . . . . 1 . 1 1 1 1 . 1 1 . . 1
4 1 1 . 1 1 1 1 . . 1 1 . 1 . . . . 1 . 1 1 1 1
1 1 1 . . 1 . . . 1 1 1 . . 1 1 . . 1 1 . 1 . . . 1
(End)
MATHEMATICA
rows = 105; ca = CellularAutomaton[30, {{1}, 0}, rows-1]; a[n_] := Length[ Last[ Split[ ca[[n, rows-n+1 ;; rows+n-1]]]]]; Table[ a[n], {n, 1, rows}] (* Jean-François Alcover, Oct 11 2012 *)
Length /@ Map[Last, Split /@ CellularAutomaton[30, {{1}, 0}, 120] /. 0 -> Nothing /. {} -> Nothing] (* Michael De Vlieger, Oct 06 2015 *)
CROSSREFS
Sequence in context: A116992 A233267 A090740 * A165595 A213181 A301848
KEYWORD
easy,nice,nonn
AUTHOR
Eric Rowland, May 13 2004
STATUS
approved