login
A094594
Total number of edges in all connected labeled graphs on n nodes.
0
0, 1, 9, 144, 4140, 214200, 20264832, 3580049088, 1202974894656, 779257681804800, 982078160760512640, 2423077679970846226944, 11755368773275419420291072, 112487517660848696830655493120
OFFSET
1,3
FORMULA
E.g.f.: A(x)/B(x), where A(x) is e.g.f. of A095351 and B(x) is e.g.f. of A006125. recurrence: a(n) = binomial(n, 2)*2^(binomial(n, 2) - 1) - Sum_{k=1..n-1} binomial(n, k)*2^binomial(n-k, 2)*a(k).
a(n) = Sum_{k=0..binomial(n,2)} A062734(n,k)*k. - Geoffrey Critzer, Sep 04 2013
MAPLE
a[1]:=0: for n from 1 to 16 do a[n]:= binomial(n, 2)*2^(binomial(n, 2)-1)-sum(binomial(n, k)*2^binomial(n-k, 2)*a[k], k=1..n-1) od: seq(a[n], n=1..16); # Emeric Deutsch, Dec 18 2004
MATHEMATICA
nn=14; f[x_, y_]:=Sum[(1+y)^Binomial[n, 2]x^n/n!, {n, 0, nn}]; Drop[Range[0, nn]!CoefficientList[Series[D[Log[f[x, y]], y]/.y->1, {x, 0, nn}], x], 1] (* Geoffrey Critzer, Sep 04 2013 *)
CROSSREFS
Sequence in context: A069134 A034829 A162993 * A173213 A223371 A046529
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jun 06 2004
EXTENSIONS
More terms from Emeric Deutsch, Dec 18 2004
STATUS
approved