OFFSET
1,1
COMMENTS
In A094429 the multiplier is [1 1 1] instead of [1 0 0]. The matrix M is derived from the 3rd-order Lucas polynomial x^3 - 7x^2 + 14x - 7, with a convergent of the series = 3.801937735... = (2 sin 3*Pi/7)^2; (an eigenvalue of the matrix and a root of the polynomial).
From Roman Witula, Sep 29 2012: (Start)
This sequence is the Berndt-type sequence number 17 for the argument 2*Pi/7 (see Formula section and Crossrefs for other Berndt-type sequences for the argument 2*Pi/7 - for numbers from 1 to 18 without 17).
Note that all numbers of the form a(n)*7^(-floor((n+4)/3)) are integers. (End)
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6.
Index entries for linear recurrences with constant coefficients, signature (7,-14,7).
FORMULA
From Colin Barker, Jun 19 2012: (Start)
a(n) = 7*a(n-1)-14*a(n-2)+7*a(n-3).
G.f.: 7*x/(1-7*x+14*x^2-7*x^3). (End)
-a(n) = s(2)*s(1)^(2*n+3) + s(4)*s(2)^(2*n+3) + s(1)*s(4)^(2*n+3), where s(j) := 2*sin(2*Pi*j/7); for the proof see A215494 and the Witula-Slota paper. This formula and the respective recurrence also give a(0)=a(-1)=0. - Roman Witula, Aug 13 2012
EXAMPLE
a(4) = 1078 since M^4 * [1 0 0] = [49 245 1078] = [a(2), a(3), a(4)].
We have a(2)=7*a(1), a(3)=5*a(2), 22*a(3)=5*a(4), and a(6)=4*a(5), which implies s(2)*s(1)^15 + s(4)*s(2)^15 + s(1)*s(4)^15 = 4*(s(2)*s(1)^13 + s(4)*s(2)^13 + s(1)*s(4)^13). - Roman Witula, Sep 29 2012
MATHEMATICA
Table[(MatrixPower[{{0, 1, 0}, {0, 0, 1}, {7, -14, 7}}, n].{1, 0, 0})[[3]], {n, 22}] (* Robert G. Wilson v, May 08 2004 *)
Join[{7}, LinearRecurrence[{7, -14, 7}, {49, 245, 1078}, 50]] (* Roman Witula, Aug 13 2012 *)(* corrected by G. C. Greubel, May 09 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(7*x/(1-7*x+14*x^2-7*x^3)) \\ G. C. Greubel, May 09 2018
(PARI) a(n) = (([0, 1, 0; 0, 0, 1; 7, -14, 7]^n)*[1, 0, 0]~)[3]; \\ Michel Marcus, May 10 2018
(Magma) I:=[49, 245, 1078]; [7] cat [n le 3 select I[n] else 7*Self(n-1) -14*Self(n-2) + 7*Self(n-3): n in [1..30]]; // G. C. Greubel, May 09 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, May 02 2004
EXTENSIONS
More terms from Robert G. Wilson v, May 08 2004
Name edited by Michel Marcus, May 10 2018
STATUS
approved