login
A094261
a(n) = n(n-1)(n-3)(n-6)...(n-t), where t is the largest triangular number less than n; number of factors in the product is ceiling((sqrt(1+8*n)-1)/2).
0
1, 2, 6, 12, 40, 90, 168, 560, 1296, 2520, 4400, 14256, 32760, 64064, 113400, 187200, 586432, 1321920, 2560896, 4522000, 7484400, 11797632, 35784320, 78871968, 150480000, 263120000, 433060992, 681080400, 1033305728, 3044304000
OFFSET
1,2
EXAMPLE
a(8) = 8*(8-1)*(8-3)*(8-6) = 8*7*5*2 = 560.
MAPLE
a:=n->product(n-k*(k+1)/2, k=0..ceil((sqrt(1+8*n)-1)/2)-1): seq(a(n), n=1..35); # Emeric Deutsch, Feb 03 2006
CROSSREFS
Sequence in context: A123045 A280171 A327879 * A080497 A127724 A178008
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Apr 26 2004
EXTENSIONS
Corrected and extended by Emeric Deutsch, Feb 03 2006
STATUS
approved