login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094094
Define x[1]...x[n] by the equations Sum_{j=1..n} x[j]^i = i, i=1..n; a(n) = n! * Sum_{j=1..n} x[j]^(n+1).
0
1, 5, 25, 139, 871, 6131, 48161, 419399, 4025071, 42359239, 486703009, 6081751259, 82345132871, 1203618149579, 18920122802881, 318578240878351, 5722495974697951, 109204791111380879, 2205128748183225281
OFFSET
1,2
COMMENTS
Suggested by Example 2.24 in Lozansky and Rousseau. Hint: use Newton's equations.
REFERENCES
E. Lozansky and C. Rousseau, Winning Solutions, Springer, 1996; see p. 103.
FORMULA
E.g.f.: (1-exp(x/(x-1)))/(1-x)^2. - Vladeta Jovovic, May 03 2004
a(n) = n!*(n+1-LaguerreL(n,1,1)) = Sum_{k=1..n} (-1)^(k+1)*n!/k!*binomial(n+1,k+1). - Vladeta Jovovic, Apr 27 2006
a(n) = (3*n - 1)*a(n-1) - n*(3*n - 4)*a(n-2) + (n-2)*(n-1)*n*a(n-3). - Vaclav Kotesovec, Nov 13 2017
MATHEMATICA
Table[Sum[(-1)^(k+1)*n!/k!*Binomial[n+1, k+1], {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Nov 13 2017 *)
CROSSREFS
Cf. A066668.
Sequence in context: A124891 A358504 A365772 * A344249 A081683 A064311
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 02 2004
EXTENSIONS
More terms from Vladeta Jovovic, May 03 2004
STATUS
approved