login
A093961
Decimal expansion of binomial(Pi, e).
2
1, 9, 0, 3, 5, 6, 8, 0, 6, 5, 7, 2, 9, 9, 0, 6, 3, 3, 8, 9, 0, 0, 8, 3, 3, 7, 2, 1, 4, 8, 1, 7, 9, 3, 5, 3, 4, 1, 6, 4, 0, 5, 8, 5, 8, 1, 5, 0, 5, 8, 0, 5, 5, 7, 6, 3, 0, 3, 4, 4, 7, 6, 8, 8, 3, 3, 6, 6, 8, 4, 9, 2, 3, 9, 9, 3, 2, 5, 1, 8, 6, 7, 9, 9, 7, 7, 4, 6, 2, 1, 9, 6, 7, 0, 9, 3, 4, 2, 4, 5, 4, 8, 4, 5, 0
OFFSET
1,2
LINKS
FORMULA
Equals Pi!/(e! * (Pi-e)!).
EXAMPLE
1.903568065729906338900833721481793534164058581505805576303447688336684... - Harry J. Smith, Jun 17 2009
MATHEMATICA
RealDigits[ Binomial[Pi, E], 10, 111][[1]]
PROG
(PARI) { allocatemem(932245000); default(realprecision, 5080); e=exp(1); x=gamma(Pi+1)/(gamma(e+1)*gamma(Pi-e+1)); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b093961.txt", n, " ", d)); } \\ Harry J. Smith, Jun 17 2009
(Sage) numerical_approx( gamma(pi+1)/(gamma(e+1)*gamma(pi -e +1)), digits=120) # G. C. Greubel, Dec 29 2021
CROSSREFS
The continued fraction is A093962.
Sequence in context: A260932 A062523 A367961 * A154903 A216251 A011110
KEYWORD
cons,nonn
AUTHOR
Robert G. Wilson v, Apr 20 2004
STATUS
approved