login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093879
First differences of A004001.
16
0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0
OFFSET
1,1
COMMENTS
All the terms are 0 or 1: it is easy to show that if {b(n)} = A004001, b(n)>=b(n-1) and b(n)<n, therefore the first differences form an infinite binary word. - Benoit Cloitre, Jun 05 2004
LINKS
J. Grytczuk, Another variation on Conway's recursive sequence, Discr. Math. 282 (2004), 149-161.
D. Newman, Problem E3274, Amer. Math. Monthly, 95 (1988), 555.
FORMULA
From Antti Karttunen, Jan 18 2016: (Start)
a(n) = A004001(n+1) - A004001(n).
Other identities. For all n >= 1:
a(A087686(n+1)-1) = 0.
a(A088359(n)-1) = 1.
a(n) = 1 if and only if A051135(n+1) = 1.
(End)
MATHEMATICA
a[1] = a[2] = 1; a[n_] := a[n] = a[a[n - 1]] + a[n - a[n - 1]]; t = Table[a[n], {n, 110}]; Drop[t, 1] - Drop[t, -1] (* Robert G. Wilson v, May 28 2004 *)
PROG
(PARI) {m=106; v=vector(m, j, 1); for(n=3, m, a=v[v[n-1]]+v[n-v[n-1]]; v[n]=a); for(n=2, m, print1(v[n]-v[n-1], ", "))}
(Scheme) (define (A093879 n) (- (A004001 (+ 1 n)) (A004001 n))) ;; Code for A004001 given in that entry. - Antti Karttunen, Jan 18 2016
(Magma)
h:=[n le 2 select 1 else Self(Self(n-1)) + Self(n-Self(n-1)): n in [1..160]];
A093879:= func< n | h[n+1] - h[n] >;
[A093879(n): n in [1..120]]; // G. C. Greubel, May 19 2024
(SageMath)
@CachedFunction
def h(n): return 1 if (n<3) else h(h(n-1)) + h(n - h(n-1))
def A093879(n): return h(n+1) - h(n)
[A093879(n) for n in range(1, 101)] # G. C. Greubel, May 19 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 27 2004
EXTENSIONS
More terms and PARI code from Klaus Brockhaus and Robert G. Wilson v, May 27 2004
STATUS
approved