OFFSET
1,1
COMMENTS
All the terms are 0 or 1: it is easy to show that if {b(n)} = A004001, b(n)>=b(n-1) and b(n)<n, therefore the first differences form an infinite binary word. - Benoit Cloitre, Jun 05 2004
LINKS
R. J. Mathar, Table of n, a(n) for n = 1..9999
J. Grytczuk, Another variation on Conway's recursive sequence, Discr. Math. 282 (2004), 149-161.
D. Newman, Problem E3274, Amer. Math. Monthly, 95 (1988), 555.
FORMULA
MATHEMATICA
a[1] = a[2] = 1; a[n_] := a[n] = a[a[n - 1]] + a[n - a[n - 1]]; t = Table[a[n], {n, 110}]; Drop[t, 1] - Drop[t, -1] (* Robert G. Wilson v, May 28 2004 *)
PROG
(PARI) {m=106; v=vector(m, j, 1); for(n=3, m, a=v[v[n-1]]+v[n-v[n-1]]; v[n]=a); for(n=2, m, print1(v[n]-v[n-1], ", "))}
(Scheme) (define (A093879 n) (- (A004001 (+ 1 n)) (A004001 n))) ;; Code for A004001 given in that entry. - Antti Karttunen, Jan 18 2016
(Magma)
h:=[n le 2 select 1 else Self(Self(n-1)) + Self(n-Self(n-1)): n in [1..160]];
A093879:= func< n | h[n+1] - h[n] >;
[A093879(n): n in [1..120]]; // G. C. Greubel, May 19 2024
(SageMath)
@CachedFunction
def h(n): return 1 if (n<3) else h(h(n-1)) + h(n - h(n-1))
def A093879(n): return h(n+1) - h(n)
[A093879(n) for n in range(1, 101)] # G. C. Greubel, May 19 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 27 2004
EXTENSIONS
More terms and PARI code from Klaus Brockhaus and Robert G. Wilson v, May 27 2004
STATUS
approved