login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093728
Decimal expansion of 2E(2i sqrt(2)), where E(k) is the complete elliptic integral of the 2nd kind.
2
6, 6, 8, 2, 4, 4, 6, 6, 1, 0, 2, 7, 7, 6, 2, 9, 1, 1, 5, 0, 6, 4, 7, 5, 1, 1, 6, 2, 5, 3, 0, 0, 9, 8, 1, 1, 9, 7, 0, 0, 4, 9, 1, 3, 3, 6, 1, 9, 4, 5, 8, 8, 5, 5, 1, 6, 4, 6, 4, 8, 0, 1, 9, 8, 2, 4, 6, 2, 9, 2, 7, 0, 9, 5, 2, 3, 2, 8, 4, 8, 0, 4, 0, 1, 2, 9, 5, 5, 3, 2, 4, 0, 5, 8, 1, 9, 9, 1, 0, 6, 4, 5
OFFSET
1,1
COMMENTS
Arc length of the trifolium r = a*cos(3*theta).
LINKS
Eric Weisstein's World of Mathematics, Trifolium
FORMULA
Equals 2*A249491. - Altug Alkan, Oct 02 2018
EXAMPLE
6.68244661027762911506475116253009811970049133619458855164648...
MAPLE
Re(evalf(2*EllipticE(2*I*sqrt(2)), 120)); # Vaclav Kotesovec, Apr 22 2015
MATHEMATICA
RealDigits[ N[ 2*EllipticE[-8], 102]][[1]] (* Jean-François Alcover, Oct 29 2012 *)
PROG
(PARI) 2*intnum(t=0, Pi/2, sqrt(1+8*sin(t)^2)) \\ Charles R Greathouse IV, Aug 15 2015
CROSSREFS
Cf. A249491.
Sequence in context: A279005 A198987 A198751 * A324001 A205863 A132711
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Apr 13 2004
STATUS
approved