Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #68 Nov 12 2024 18:44:08
%S 1,3,1,3,4,1,3,7,5,1,3,10,12,6,1,3,13,22,18,7,1,3,16,35,40,25,8,1,3,
%T 19,51,75,65,33,9,1,3,22,70,126,140,98,42,10,1,3,25,92,196,266,238,
%U 140,52,11,1,3,28,117,288,462,504,378,192,63,12,1,3,31,145,405,750,966,882,570,255,75,13,1
%N (3,1) Pascal triangle.
%C The array F(3;n,m) gives in the columns m >= 1 the figurate numbers based on A016777, including the pentagonal numbers A000326 (see the W. Lang link).
%C This is the third member, d=3, in the family of triangles of figurate numbers, called (d,1) Pascal triangles: A007318 (Pascal (d=1), A029653 (d=2).
%C This is an example of a Riordan triangle (see A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group) with o.g.f. of column nr. m of the type g(x)*(x*f(x))^m with f(0)=1. Therefore the o.g.f. for the row polynomials p(n,x):=Sum_{m=0..n} a(n,m)*x^m is G(z,x)=g(z)/(1-x*z*f(z)). Here: g(x)=(1+2*x)/(1-x), f(x)=1/(1-x), hence G(z,x)=(1+2*z)/(1-(1+x)*z).
%C The SW-NE diagonals give the Lucas numbers A000032: L(n) = Sum_{k=0..ceiling((n-1)/2)} a(n-1-k,k), n >= 1, with L(0)=2. Observation by _Paul Barry_, Apr 29 2004. Proof via recursion relations and comparison of inputs.
%C Triangle T(n,k), read by rows, given by [3,-2,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - _Philippe Deléham_, Sep 17 2009
%C For a closed-form formula for generalized Pascal's triangle see A228576. - _Boris Putievskiy_, Sep 09 2013
%C From _Wolfdieter Lang_, Jan 09 2015: (Start)
%C The signed lower triangular matrix (-1)^(n-1)*a(n,m) is the inverse of the Riordan matrix A106516; that is Riordan ((1-2*x)/(1+x),x/(1+x)).
%C See the _Peter Bala_ comment from Dec 23 2014 in A106516 for general Riordan triangles of the type (g(x), x/(1-x)): exp(x)*r(n,x) = d(n,x) with the e.g.f. r(n,x) of row n and the e.g.f. of diagonal n.
%C Similarly, for general Riordan triangles of the type (g(x), x/(1+x)): exp(x)*r(n,-x) = d(n,x). (End)
%C The n-th row polynomial is (3 + x)*(1 + x)^(n-1) for n >= 1. More generally, the n-th row polynomial of the Riordan array ( (1-a*x)/(1-b*x), x/(1-b*x) ) is (b - a + x)*(b + x)^(n-1) for n >= 1. - _Peter Bala_, Mar 02 2018
%C Binomial(n-2,k)+2*Binomial(n-3,k) is also the number of permutations avoiding both 123 and 132 with k double descents, i.e., positions with w[i]>w[i+1]>w[i+2]. - _Lara Pudwell_, Dec 19 2018
%D Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
%D Ivo Schneider, Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch.5, pp. 109-122.
%H Reinhard Zumkeller, <a href="/A093560/b093560.txt">Rows n = 0..125 of triangle, flattened</a>
%H P. Bala, <a href="/A081577/a081577.pdf">A note on the diagonals of a proper Riordan Array</a>
%H M. Bukata, R. Kulwicki, N. Lewandowski, L. Pudwell, J. Roth, and T. Wheeland, <a href="https://arxiv.org/abs/1812.07112">Distributions of Statistics over Pattern-Avoiding Permutations</a>, arXiv preprint arXiv:1812.07112 [math.CO], 2018.
%H W. Lang, <a href="/A093560/a093560.txt">First 10 rows and array of figurate numbers </a>.
%F a(n, m)=F(3;n-m, m) for 0<= m <= n, otherwise 0, with F(3;0, 0)=1, F(3;n, 0)=3 if n>=1 and F(3;n, m):=(3*n+m)*binomial(n+m-1, m-1)/m if m>=1.
%F G.f. column m (without leading zeros): (1+2*x)/(1-x)^(m+1), m>=0.
%F Recursion: a(n, m)=0 if m>n, a(0, 0)= 1; a(n, 0)=3 if n>=1; a(n, m)= a(n-1, m) + a(n-1, m-1).
%F T(n, k) = C(n, k) + 2*C(n-1, k). - _Philippe Deléham_, Aug 28 2005
%F Equals M * A007318, where M = an infinite triangular matrix with all 1's in the main diagonal and all 2's in the subdiagonal. - _Gary W. Adamson_, Dec 01 2007
%F Sum_{k=0..n} T(n,k) = A151821(n+1). - _Philippe Deléham_, Sep 17 2009
%F exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(3 + 7*x + 5*x^2/2! + x^3/3!) = 3 + 10*x + 22*x^2/2! + 40*x^3/3! + 65*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - _Peter Bala_, Dec 22 2014
%F G.f.: (-1-2*x)/(-1+x+x*y). - _R. J. Mathar_, Aug 11 2015
%e Triangle begins
%e 1,
%e 3, 1,
%e 3, 4, 1,
%e 3, 7, 5, 1,
%e 3, 10, 12, 6, 1,
%e 3, 13, 22, 18, 7, 1,
%e 3, 16, 35, 40, 25, 8, 1,
%e 3, 19, 51, 75, 65, 33, 9, 1,
%e 3, 22, 70, 126, 140, 98, 42, 10, 1,
%e 3, 25, 92, 196, 266, 238, 140, 52, 11, 1,
%o (Haskell)
%o a093560 n k = a093560_tabl !! n !! k
%o a093560_row n = a093560_tabl !! n
%o a093560_tabl = [1] : iterate
%o (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [3, 1]
%o -- _Reinhard Zumkeller_, Aug 31 2014
%o (GAP) Concatenation([1],Flat(List([1..11],n->List([0..n],k->Binomial(n,k)+2*Binomial(n-1,k))))); # _Muniru A Asiru_, Dec 20 2018
%o (Python)
%o from math import comb, isqrt
%o def A093560(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),a:=n-comb(r+1,2))*(r+(r-a<<1))//r if n else 1 # _Chai Wah Wu_, Nov 12 2024
%Y Cf. Column sequences for m=1..9: A016777, A000326 (pentagonal), A002411, A001296, A051836, A051923, A050494, A053367, A053310;
%Y A007318 (Pascal's triangle), A029653 ((2,1) Pascal triangle), A093561 ((4,1) Pascal triangle), A228196, A228576.
%K nonn,tabl,easy
%O 0,2
%A _Wolfdieter Lang_, Apr 22 2004
%E Incorrect connection with A046055 deleted by _N. J. A. Sloane_, Jul 08 2009