login
A093428
Prime numbers which are successors of a power of a Fibonacci number.
0
5, 17, 257, 65537, 1336337, 19170731299728100000001, 285347346718226949041792907369577650673693754163660005676181161059099319730177, 29585383599687066848440635756425168157198788892517565295922752892368299949134315777
OFFSET
1,1
COMMENTS
Let a(n) = Fibonacci(x)^y+1, then there exists some a,b > 0, such that x = 3*a and y = 2^b. For the example a(5) = 1336337: x = 9, y = 4, a = 3 and b = 2.
Last digit seems to be usually 7, except for a(1) and a(6). - Alexander Adamchuk, Aug 09 2006
LINKS
U. Dudley, B. Tucker, Greatest Common Divisors in Altered Fibonacci Sequences, Fibonacci Quarterly 1971, pages 89-91.
Letter from Toby Gee in Mathematical Spectrum, Fibonacci numbers, vol. 29 (1996/1997), page 66.
V. E. Hoggatt Jr. and M. Bicknell-Johnson, Composites and Primes Among Powers of Fibonacci Numbers increased or decreased by one, Fibonacci Quarterly vol. 15 (1977), page 2.
EXAMPLE
a(5) = 1336337 because 1336337 is prime, and 1336337-1 = 1336336 = 34^4+1 = Fibonacci(9)^4+1.
a(6) = Fibonacci(15)^8 + 1, a(7) = Fibonacci(48)^8 + 1, a(8) = Fibonacci(51)^8 + 1, a(9) = Fibonacci(63)^8 + 1, a(10) = Fibonacci(21)^32 + 1, a(11) = Fibonacci(198)^4 + 1, a(12) = Fibonacci(204)^8 + 1, a(13) = Fibonacci(366)^8 + 1. - Alexander Adamchuk, Aug 09 2006
MATHEMATICA
Select[Take[Intersection[Flatten[Table[Fibonacci[3n]^(2^m)+1, {n, 1, 300}, {m, 1, 7}]]], {1, 400}], PrimeQ] (* Alexander Adamchuk, Aug 09 2006 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Lior Manor, May 12 2004
EXTENSIONS
More terms from Alexander Adamchuk, Aug 09 2006
STATUS
approved