login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093190
Array t read by antidiagonals: number of {112,212}-avoiding words.
1
1, 1, 2, 1, 4, 3, 1, 6, 9, 4, 1, 8, 21, 16, 5, 1, 10, 39, 52, 25, 6, 1, 12, 63, 136, 105, 36, 7, 1, 14, 93, 292, 365, 186, 49, 8, 1, 16, 129, 544, 1045, 816, 301, 64, 9, 1, 18, 171, 916, 2505, 3006, 1603, 456, 81, 10, 1, 20, 219, 1432, 5225, 9276, 7315, 2864, 657, 100, 11
OFFSET
1,3
COMMENTS
t(k,n) = number of n-long k-ary words that simultaneously avoid the patterns 112 and 212.
LINKS
A. Burstein and T. Mansour, Words restricted by patterns with at most 2 distinct letters, arXiv:math/0110056 [math.CO], 2001.
FORMULA
t(n, k) = Sum{j=0..n} j!*C(n, j)*C(k-1, j-1). (square array)
T(n, k) = Sum_{j=0..n-k+1} j!*binomial(k,j)*binomial(n-k,j-1). (number triangle) - G. C. Greubel, Mar 09 2021
EXAMPLE
Square array begins as:
1 1 1 1 1 1 ... 1*A000012;
2 4 6 8 10 12 ... 2*A000027;
3 9 21 39 63 93 ... 3*A002061;
4 16 52 136 292 544 ... 4*A135859;
5 25 105 365 1045 2505 ... ;
Antidiagonal rows begins as:
1;
1, 2;
1, 4, 3;
1, 6, 9, 4;
1, 8, 21, 16, 5;
1, 10, 39, 52, 25, 6;
1, 12, 63, 136, 105, 36, 7;
MATHEMATICA
T[n_, k_]:= Sum[j!*Binomial[k, j]*Binomial[n-k, j-1], {j, 0, n-k+1}];
Table[T[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Mar 09 2021 *)
PROG
(PARI) t(n, k)=sum(j=0, k, j!*binomial(k, j)*binomial(n-1, j-1))
(Sage) flatten([[ sum(factorial(j)*binomial(k, j)*binomial(n-k, j-1) for j in (0..n-k+1)) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 09 2021
(Magma) [(&+[Factorial(j)*Binomial(k, j)*Binomial(n-k, j-1): j in [0..n-k+1]]): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 09 2021
CROSSREFS
Main diagonal is A052852.
Antidiagonal sums are in A084261 - 1.
Sequence in context: A103406 A142978 A152060 * A132191 A094437 A172431
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, Apr 20 2004
STATUS
approved