login
A093134
A Jacobsthal trisection.
7
1, 0, 8, 56, 456, 3640, 29128, 233016, 1864136, 14913080, 119304648, 954437176, 7635497416, 61083979320, 488671834568, 3909374676536, 31274997412296, 250199979298360, 2001599834386888, 16012798675095096, 128102389400760776, 1024819115206086200, 8198552921648689608
OFFSET
0,3
COMMENTS
Counts closed walks at a vertex of the complete graph on 9 nodes K_9.
Second binomial transform is A047855.
FORMULA
G.f.: (1-7*x)/(1 - 7*x - 8*x^2).
a(n) = (8^n + 8*(-1)^n)/9.
a(n) = 8*A001045(3*n-3)/3.
From Elmo R. Oliveira, Aug 17 2024: (Start)
E.g.f.: exp(-x)*(exp(9*x) + 8)/9.
a(n) = 7*a(n-1) + 8*a(n-2) for n > 1. (End)
MATHEMATICA
k=0; lst={1, k}; Do[k=8^n-k; AppendTo[lst, k], {n, 1, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
Table[(8^n + 8*(-1)^n)/9, {n, 0, 30}] (* or *) LinearRecurrence[{7, 8}, {1, 0}, 30] (* G. C. Greubel, Jan 06 2018 *)
PROG
(Magma) [(8^n/9+8*(-1)^n/9): n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
(PARI) for(n=0, 30, print1((8^n + 8*(-1)^n)/9, ", ")) \\ G. C. Greubel, Jan 06 2018
CROSSREFS
Other sequences with a(n+1) = 8^n - a(n) are A001045, A078008, A097073, A115341, A015518, A054878, A015521, A109499, A015531, A109500, A109501, A015552, A015565. - Vladimir Joseph Stephan Orlovsky, Dec 11 2008
Cf. A047855.
Sequence in context: A323700 A182430 A027081 * A001398 A251250 A087290
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 23 2004
STATUS
approved