login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that prime(k) == 3 (mod 16).
4

%I #22 Sep 08 2022 08:45:13

%S 2,8,19,23,32,38,41,47,49,63,81,91,95,101,103,117,120,125,131,138,153,

%T 161,182,188,193,195,208,225,232,241,248,256,262,266,272,280,292,300,

%U 304,314,317,321,327,334,346,351,365,370,376,385,394,409,410,414,427

%N Numbers k such that prime(k) == 3 (mod 16).

%C A091968 indexed by A000040.

%C The asymptotic density of this sequence is 1/8 (by Dirichlet's theorem). - _Amiram Eldar_, Mar 01 2021

%H G. C. Greubel, <a href="/A093012/b093012.txt">Table of n, a(n) for n = 1..5000</a>

%F A000040(a(n)) = A091968(n).

%F a(n) = A000720(A091968(n)).

%t Select[Range[430], Mod[Prime[ # ], 16] == 3 &] (* _Ray Chandler_, Nov 06 2006 *)

%o (Magma) [n: n in [1..450]|(NthPrime(n) mod 16) eq 3] // _G. C. Greubel_, Feb 05 2019

%o (PARI) {isok(n) = Mod(prime(n), 16)==3};

%o for(n=1, 450, if(isok(n)==1, print1(n, ", "), 0)) \\ _G. C. Greubel_, Feb 05 2019

%Y Cf. A000040, A000720, A091968, A092022.

%K nonn

%O 1,1

%A _Ray Chandler_, Mar 15 2004, revised Nov 06 2006