login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of connected relations.
1

%I #15 Sep 08 2022 08:45:13

%S 1,67,1993,43891,836521,14764627,249723433,4123297651,67157947561,

%T 1085384064787,17464790421673,280328391247411,4493290901135401,

%U 71964955947764947,1152089156508284713,18439265231953981171,295080697103288816041,4721762414918959913107

%N Number of connected relations.

%H G. C. Greubel, <a href="/A092795/b092795.txt">Table of n, a(n) for n = 1..825</a>

%H G. Kilibarda and V. Jovovic, <a href="https://arxiv.org/abs/1411.4187">Enumeration of some classes of T_0-hypergraphs</a>, arXiv:1411.4187 [math.CO], 2014.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (43,-701,5477,-20658,30240).

%F a(n) = 16^n - 4*9^n - 3*7^n + 12*6^n - 6*5^n.

%F G.f.: x*(318*x^3+187*x^2-24*x-1) / ((5*x-1)*(6*x-1)*(7*x-1)*(9*x-1)*(16*x-1)). - _Colin Barker_, Jul 13 2013

%t Table[16^n - 4*9^n - 3*7^n + 12*6^n - 6*5^n, {n, 1, 50}] (* _G. C. Greubel_, Oct 08 2017 *)

%o (PARI) for(n=1,50, print1(16^n - 4*9^n - 3*7^n + 12*6^n - 6*5^n, ", ")) \\ _G. C. Greubel_, Oct 08 2017

%o (Magma) [16^n - 4*9^n - 3*7^n + 12*6^n - 6*5^n: n in [1..50]]; // _G. C. Greubel_, Oct 08 2017

%Y Cf. A005333, A001047, A002501, A002502, A093732, A093733.

%K nonn,easy

%O 1,2

%A Goran Kilibarda, _Vladeta Jovovic_, Apr 15 2004

%E More terms from _Colin Barker_, Jul 13 2013