login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092442
Sequence arising from enumeration of domino tilings of Aztec Pillow-like regions.
2
0, 1, 5, 19, 59, 161, 405, 967, 2231, 5029, 11153, 24443, 53091, 114505, 245549, 524047, 1113839, 2358989, 4980393, 10485379, 22019675, 46136881, 96468485, 201326039, 419429799, 872414581, 1811938625, 3758095627, 7784627411
OFFSET
0,3
COMMENTS
Differences give A066368.
REFERENCES
J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13).
LINKS
J. Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
FORMULA
a(n)=(n+1)(2^n-1)-n^2.
G.f.:(x*(4*x^3-3*x^2+2*x-1))/((2*x-1)^2*(x-1)^3) [From Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009]
EXAMPLE
a(3)=4(2^3-1)-3^2=19.
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004
STATUS
approved