login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091862
a(n) = 1 if the sum of all exponents of the prime-factorization of n has no carries when summed in base 2, or a(n) = 0 if there are any carries.
5
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0
OFFSET
1,1
COMMENTS
Characteristic function for A268375. - Antti Karttunen, Nov 23 2017
FORMULA
If A268374(n) = 0, then a(n) = 1, 0 otherwise. - Antti Karttunen, Nov 23 2017
EXAMPLE
a(12) = 1 because 12 = 2^2 *3^1 and, in base 2, 2 = '10', 1 = '1' and '10' and '1' have their ones in different positions. But a(24) = 0 because 24 = 2^3 *3^1 and in base 2 3 = '11', 1 = '1', which both share a rightmost one.
MATHEMATICA
f[e_] := Position[Reverse[IntegerDigits[e, 2]], 1] // Flatten; a[n_] := Boole[UnsameQ @@ Flatten[f /@ FactorInteger[n][[;; , 2]]]]; Array[a, 100] (* Amiram Eldar, Dec 23 2023 *)
PROG
(PARI) a(n) = {my(e = factor(n)[, 2], b = 0); for(i=1, #e, b = bitor(b, e[i])); n == 1 || b == vecsum(e); } \\ Amiram Eldar, Dec 23 2023
CROSSREFS
Cf. A268375 (positions of ones), A268376 (of zeros).
Sequence in context: A373851 A142720 A196308 * A351564 A237048 A344880
KEYWORD
nonn,base
AUTHOR
Leroy Quet, Mar 13 2004
EXTENSIONS
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004
STATUS
approved