login
A091590
Number of terms in the simple continued fraction for the 10^n-th harmonic number, H_n = sum_{k=1 to n} (1/k).
0
1, 8, 68, 834, 8356, 84548, 841817, 8425934, 84277586
OFFSET
0,2
COMMENTS
Conjecture: lim n -> infinity, a(n)/10^n -> C = 12*log(2)/Pi^2 = 0.842... - Benoit Cloitre, May 04 2002
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 156.
LINKS
FORMULA
a(n) = A055573(10^n). - Andrew Howroyd, Aug 10 2024
MATHEMATICA
s = 0; k = 1; Do[ While[s = s + 1/k; k < 10^n, k++ ]; Print[ Length[ ContinuedFraction[s]]]; k++, {n, 0, 6}]
Table[Length[ContinuedFraction[HarmonicNumber[10^n]]], {n, 0, 7}] (* Harvey P. Dale, Aug 24 2015 *)
CROSSREFS
Cf. A055573. n-th harmonic number H(m) = A001008(n)/A002805(n).
Sequence in context: A243246 A113357 A030992 * A303010 A087487 A178368
KEYWORD
hard,nonn
AUTHOR
Robert G. Wilson v, Jan 22 2004
EXTENSIONS
Corrected and extended by Eric W. Weisstein, Jan 23 2004
STATUS
approved