OFFSET
1,1
COMMENTS
A001067(n) / A046968(n) when they are different, or alternatively, gcd(A001067(n),2n-1) when that number is > 1.
These numbers are always products of irregular primes (A000928).
All values yielding 37 are of the form 574+666*k, k=0,1,2,3,4,... and form thus an arithmetic progression with step 666=18*37=((37-1)/2)*37. All values yielding 59 are of the form 1269+1711*k, k=0,1,2,3 and 1711=28*59=((59-1)/2)*59. The two values yielding 67 are at distance 2211=((67-1)/2)*67. Conjecture: all indices yielding a given prime p form an arithmetic progression of step ((p-1)/2)*p. See A092291. - Roland Bacher, Feb 04 2004
The positions where 37 occurs appear to coincide with A026352. - Mohammed Bouayoun, Feb 05 2004
Roland Bacher conjectures that values of n yielding the same quotient p form an arithmetic progression n0+d*k, where d = p(p-1)/2. Actual and conjectured values of n0 are in the sequence A092291.
Composite values do occur. An example is 2n = 272876, which yields a quotient of 37*59. This was found by tdn using the Kummer congruences and CRT: using the irregular pairs (37,32) and (59,44), we know that the following Diophantine equations must be solved for (k,l,m): 32+36*k = 44+58*l = 1+37*59*m. Some quotients are not possible, e.g., 37*67, 37*103. All quotients are the product of irregular primes A000928. Composite quotients imply there are missing terms in the arithmetic progression conjectured by Bacher. - T. D. Noe, Feb 12 2004
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..200 (calculated from the b-file at A090495)
Bernd Kellner, A conjecture about numerators of Bernoulli numbers
Eric Weisstein's World of Mathematics, Stirling's Series
MATHEMATICA
A090496 = {}; Do[ r = Numerator[ b = BernoulliB[2n]/(2n) ] / Numerator[ b/(2n-1) ]; If[ r > 1, Print[n, " ", r]; AppendTo[ A090496, r] ], {n, 1, 20000}]; A090496 (* Jean-François Alcover, Jan 24 2012 *)
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
N. J. A. Sloane, Feb 03 2004
EXTENSIONS
a(1)-a(7) from Michael Somos and W. Edwin Clark, Feb 03 2004
a(8), a(9) from Robert G. Wilson v, Feb 03 2004
a(10)-a(12) from Eric W. Weisstein, Feb 03 2004
a(13)-a(39) from Cino Hilliard, Feb 03 2004
a(40)-a(44) from Eric W. Weisstein, Feb 04 2004
Terms from a(45) onwards from David Wasserman, Dec 06 2005
STATUS
approved