Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Sep 19 2024 01:50:28
%S 10,70,190,1330,8170,9730,24130,28462,58030,98458,143830,144886,
%T 327370,856786,1580230,1620130,3536470,5274970,6082490,6376126,
%U 6792710,8066170,8610610,14076910,17728930,27275158,42447406,52970386,53497978,68925130
%N Even pseudoprimes to base 11.
%H Amiram Eldar, <a href="/A090084/b090084.txt">Table of n, a(n) for n = 1..165</a> (terms below 10^11; terms 1..84 from Robert G. Wilson v)
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FermatPseudoprime.html">Fermat Pseudoprime</a>.
%H <a href="/index/Ps#pseudoprimes">Index entries for sequences related to pseudoprimes</a>.
%t Do[ f=PowerMod[ 11, 2n-1, 2n ]; If[ f==1, Print[ 2n ] ],{n,2,800000} ] (* _Alexander Adamchuk_, May 26 2007 *)
%t lst = {}; Do[ If[ PowerMod[11, 2n - 1, 2n] == 1, AppendTo[lst, 2n]], {n, 2, 2*10^9}]; lst (* _Robert G. Wilson v_, Jun 01 2007 *)
%t Select[Range[4,68926000,2],PowerMod[11,#-1,#]==1&] (* _Harvey P. Dale_, Oct 16 2021 *)
%o (PARI) is(k) = k > 2 && !(k % 2) && Mod(11, k)^(k-1) == 1; \\ _Amiram Eldar_, Sep 18 2024
%Y Cf. A020139.
%Y Cf. A006935, A130433, A090082, A090083, A090085, A130434, A130435, A130436, A130438, A130439, A130440, A130441, A130442, A130443.
%K nonn
%O 1,1
%A _Labos Elemer_, Nov 25 2003
%E More terms from _Alexander Adamchuk_, May 26 2007
%E Further terms from _Robert G. Wilson v_, Jun 01 2007