login
A090076
a(n) = prime(n)*prime(n+2).
21
10, 21, 55, 91, 187, 247, 391, 551, 713, 1073, 1271, 1591, 1927, 2279, 2773, 3233, 3953, 4331, 4891, 5609, 6059, 7031, 8051, 8989, 9991, 10807, 11227, 12091, 13843, 14803, 17399, 18209, 20413, 20989, 23393, 24613, 26219, 28199, 29893, 31313
OFFSET
1,1
COMMENTS
Subsequence of A192133. - Reinhard Zumkeller, Jun 26 2011
For n > 1: A078898(a(n)) = 4. - Reinhard Zumkeller, Apr 06 2015
LINKS
C. Cobeli and A. Zaharescu, A game with divisors and absolute differences of exponents, Journal of Difference Equations and Applications, Vol. 20, #11 (2014) pp. 1489-1501, DOI: 10.1080/10236198.2014.940337. Also available as arXiv:1411.1334 [math.NT], 2014.
EXAMPLE
a(5) = prime(5)*prime(7) = 11*17 = 187.
MATHEMATICA
Table[Prime[n] Prime[n + 2], {n, 1, 40}] (* Robert G. Wilson v, Jan 22 2004 *)
Last[#]First[#]&/@Partition[Prime[Range[50]], 3, 1] (* Harvey P. Dale, May 08 2013 *)
PROG
(MuPAD) ithprime(i)*ithprime(i+2) $ i = 1..40 // Zerinvary Lajos, Feb 26 2007
(Sage)
def prime_gaps(n):
primegaps = []
nprimes = primes_first_n(n+1)
for i in range(2, n+1):
primegaps.append(nprimes[i]*nprimes[i-2])
return primegaps
print(prime_gaps(60)) # Zerinvary Lajos, Jul 08 2008
(Haskell)
a090076 n = a090076_list !! (n-1)
a090076_list = zipWith (*) a000040_list $ drop 2 a000040_list
-- Reinhard Zumkeller, Dec 17 2014
CROSSREFS
Subset of the squarefree semiprimes, A006881. Cf. A006094, A090090.
Cf. A078898.
Sequence in context: A042309 A215757 A048697 * A231966 A156592 A045973
KEYWORD
easy,nonn
AUTHOR
Felix Tubiana, Jan 21 2004
EXTENSIONS
Extended by Robert G. Wilson v, Jan 22 2004
STATUS
approved