login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089777
a(n) = smallest prime of the form n followed by a prime.
2
13, 23, 37, 43, 53, 67, 73, 83, 97, 103, 113, 127, 137, 1423, 157, 163, 173, 1811, 193, 2011, 2111, 223, 233, 2411, 257, 263, 277, 283, 293, 307, 313, 3217, 337, 347, 353, 367, 373, 383, 397, 4013, 4111, 4211, 433, 443, 457, 463, 4723, 487, 4919, 503, 5113
OFFSET
1,1
COMMENTS
Open problem(?): show that a(n) always exists.
MAPLE
cat2 := proc(a, b) local dgs ; dgs := max(1, ilog10(b)+1) ; a*10^dgs+b ; end: A089777 := proc(k) local i, p, q ; for i from 1 do p := ithprime(i) ; q := cat2(k, p) ; if isprime(q) then RETURN(q) ; fi; od: end: for k from 1 to 80 do printf("%d, ", A089777(k)) ; od: # R. J. Mathar, Jan 05 2009
MATHEMATICA
Table[k=2; While[p=FromDigits[Join[IntegerDigits[n], IntegerDigits[Prime[k]]]]; !PrimeQ[p], k++ ]; p, {n, 100}] (* T. D. Noe, Jan 06 2009 *)
CROSSREFS
Cf. A096915 (gives the primes that are appended to n). - R. J. Mathar, Jan 05 2009
Sequence in context: A165459 A108794 A272721 * A050857 A089714 A070219
KEYWORD
base,easy,nonn
AUTHOR
Amarnath Murthy, Nov 24 2003
EXTENSIONS
Extended by T. D. Noe and R. J. Mathar, Jan 06 2009
STATUS
approved