OFFSET
0,8
COMMENTS
T(n,k) is the number of lattice paths from {n}^k to {0}^k using steps that decrement one component by 1. - Alois P. Heinz, May 06 2013
LINKS
Alois P. Heinz, Antidiagonals n = 0..32, flattened
T. Chappell, A. Lascoux, S. Ole Warnaar, W. Zudilin, Logarithmic and complex constant term identities, arXiv:1112.3130 [math.CO], 2012.
EXAMPLE
Row n=0: 1, 1, 1, 1, 1, 1, ... A000012
Row n=1: 1, 1, 2, 6, 24, 120, ... A000142
Row n=2: 1, 1, 6, 90, 2520, 113400, ... A000680
Row n=3: 1, 1, 20, 1680, 369600, 168168000, ... A014606
Row n=4: 1, 1, 70, 34650, 63063000, 305540235000, ... A014608
Row n=5: 1, 1, 252, 756756, 11732745024, 623360743125120, ... A014609
MAPLE
T:= (n, k)-> (k*n)!/(n!)^k:
seq(seq(T(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Aug 16 2012
MATHEMATICA
T[n_, k_] := (k*n)!/(n!)^k; Table[T[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 19 2015 *)
CROSSREFS
KEYWORD
AUTHOR
Philippe Deléham, Jan 08 2004; revised Jun 08 2005
EXTENSIONS
Corrected by Alois P. Heinz, Aug 16 2012
STATUS
approved