login
A089738
Triangle of T(n,k)=number of peakless Motzkin paths of length n containing k valleys (can be easily expressed using RNA secondary structure terminology).
0
1, 1, 1, 2, 4, 8, 16, 1, 33, 4, 69, 13, 146, 38, 1, 312, 106, 5, 673, 284, 21, 1463, 742, 77, 1, 3202, 1904, 261, 6, 7050, 4823, 831, 31, 15605, 12096, 2534, 136, 1, 34705, 30106, 7474, 540, 7, 77511, 74484, 21480, 1984, 43
OFFSET
0,4
COMMENTS
Rows 0,1,2 contain one entry each and row n (n>=3) contains floor(n/3) entries.
LINKS
P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1979), 261-272.
M. Vauchassade de Chaumont and G. Viennot, Polynômes orthogonaux et problèmes d'énumération en biologie moléculaire, Publ. I.R.M.A. Strasbourg, 1984, 229/S-08; Sem. Loth. Comb. B08l (1984) 79-86.
FORMULA
G.f.: G(t, z) satisfies G=1+zG+z^2*(G-1)[G-(1-t)(G-1-zG)].
EXAMPLE
T(7,1)=4 because we have HUH(DU)HD, UH(DU)HDH, UH(DU)HHD and UHH(DU)HD, where U=(1,1), D=(1,-1) and H=(1,0); the valleys are shown between parentheses.
CROSSREFS
Row sums give A004148.
Sequence in context: A317506 A317501 A097777 * A110333 A247292 A069783
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jan 07 2004
STATUS
approved