login
A089659
a(n) = S1(n,2), where S1(n, t) = Sum_{k=0..n} (k^t * Sum_{j=0..k} binomial(n,j)).
6
0, 2, 19, 104, 440, 1600, 5264, 16128, 46848, 130560, 352000, 923648, 2369536, 5963776, 14766080, 36044800, 86900736, 207224832, 489357312, 1145569280, 2660761600, 6136266752, 14060355584, 32027705344, 72561459200, 163577856000, 367068708864, 820204535808
OFFSET
0,2
LINKS
Jun Wang and Zhizheng Zhang, On extensions of Calkin's binomial identities, Discrete Math., 274 (2004), 331-342.
FORMULA
a(n) = 2^(n-3)*n*(7*n^2 + 12*n + 5)/3. (see Wang and Zhang p. 333)
From Chai Wah Wu, Jun 21 2016: (Start)
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) for n > 3.
G.f.: x*(2 + 3*x)/(1 - 2*x)^4. (End)
E.g.f.: x*(12 + 33*x + 14*x^2)*exp(2*x)/6. - Ilya Gutkovskiy, Jun 21 2016
MATHEMATICA
LinearRecurrence[{8, -24, 32, -16}, {0, 2, 19, 104}, 40] (* Vincenzo Librandi, Jun 22 2016 *)
PROG
(Magma) I:=[0, 2, 19, 104]; [n le 4 select I[n] else 8*Self(n-1)-24*Self(n-2)+32*Self(n-3)-16*Self(n-4): n in [1..41]]; // Vincenzo Librandi, Jun 22 2016
(SageMath) [2^(n-3)*n*(7*n^2 + 12*n + 5)/3 for n in (0..40)] # G. C. Greubel, May 24 2022
CROSSREFS
Sequences of S1(n, t): A001792 (t=0), A089658 (t=1), this sequence (t=2), A089660 (t=3), A089661 (t=4), A089662 (t=5), A089663 (t=6).
Sequence in context: A360816 A193047 A055875 * A240124 A278405 A285791
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 04 2004
STATUS
approved