login
A089485
Numbers k such that k^4 + 4^k = A001589(k) is a semiprime.
0
3, 5, 15, 35, 55
OFFSET
1,1
COMMENTS
For n = 2*k + 1, n^4 + 4^n = (n^2 + n*2^(k + 1) + 2^n) * (n^2 - n*2^(k + 1) + 2^n) The sequence gives those values of n for which both parentheses are primes. No further terms were found for k<=5000.
a(6) > 120000, if it exists. - Tyler Busby, Feb 13 2023
LINKS
Ignacio Larrosa CaƱestro et al., Find all primes of the form 4^n + n^4. Discussion in newsgroup sci.math (2003).
EXAMPLE
a(1)=3 because 3^4+4^3=145=5*29, a(2)=5 because 5^4+4^5=1649=17*97.
MATHEMATICA
Select[Range[60], PrimeOmega[#^4+4^#]==2&] (* Harvey P. Dale, Jul 31 2020 *)
PROG
(PARI) for(k=0, 5000, my(n=2*k+1, p1=n^2+n*2^(k+1)+2^n, p2=n^2-n*2^(k+1)+2^n); if(ispseudoprime(p1)&&ispseudoprime(p2), print1(n, ", "))) \\ Hugo Pfoertner, Jul 24 2019
CROSSREFS
Cf. A001589.
Sequence in context: A148501 A148502 A295614 * A279684 A146212 A265762
KEYWORD
nonn,more
AUTHOR
Hugo Pfoertner, Nov 11 2003
STATUS
approved