login
A089451
a(n) = mu(prime(n)-1), where mu is the Moebius function (A008683).
10
1, -1, 0, 1, 1, 0, 0, 0, 1, 0, -1, 0, 0, -1, 1, 0, 1, 0, -1, -1, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 1, 0, 1, 0, -1, 0, 0, 0, 1, -1, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0, 1, 0, 0, 1, -1, 0, 0, 1, 0, 0, 0, 0, -1, 0, -1, 0, -1, -1, 0, 0, 0, 1, 1, 1, 0, 0, -1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, -1, 0, 0
OFFSET
1,1
COMMENTS
Note that A049092 lists prime(n) such that a(n) = 0. Similarly, A078330 lists prime(n) such that a(n) = -1. See A088179 for prime(n) such that a(n) = 1. Also note that a(n) == A088144(n) (mod prime(n)).
REFERENCES
J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 236.
LINKS
Eric Weisstein's World of Mathematics, Moebius Function
FORMULA
a(n) = A067460(n) - 1. - Benoit Cloitre, Nov 04 2003
If p = prime(n), then a(n) is congruent modulo p to the sum of all primitive roots modulo p. [Uspensky and Heaslet]. - Michael Somos, Feb 16 2020
MATHEMATICA
Table[MoebiusMu[Prime[n]-1], {n, 150}]
PROG
(PARI) a(n)=moebius(prime(n)-1)
(Magma) [MoebiusMu(NthPrime(n)-1): n in [1..100]]; // Vincenzo Librandi, Dec 23 2018
CROSSREFS
Cf. A089495 (mu(p+1) for prime p), A089496 (mu(p+1)+mu(p-1) for prime p), A089497 (mu(p+1)-mu(p-1) for prime p).
Sequence in context: A128432 A195198 A039966 * A145099 A374045 A205083
KEYWORD
sign
AUTHOR
T. D. Noe, Nov 03 2003
STATUS
approved