login
a(n) = m - A089398(2^m - n) for m>=n.
6

%I #5 Mar 29 2015 14:09:14

%S 0,2,2,2,1,4,2,2,1,3,3,3,3,4,2,2,1,3,3,3,2,5,3,3,2,4,4,5,3,4,2,2,1,3,

%T 3,3,2,5,3,3,2,4,4,4,4,5,3,3,2,4,4,4,3,6,4,4,3,5,6,5,3,4,2,2,1,3,3,3,

%U 2,5,3,3,2,4,4,4,4,5,3,3,2,4,4,4,3,6,4,4,3,5,5,6,4,5,3,3,2,4,4,4,3,6,4,4,3

%N a(n) = m - A089398(2^m - n) for m>=n.

%C A089398(n) = n-th column sum of binary digits of k*2^(k-1), where summation is over k>=1, without carrying between columns.

%F a(2^k)=1 (for k>1), a(2^k+j)=1+a(j) (for 2^k-k>j>=0), a(2^k-j)=1+A089401(j) (for k>j>0).

%e a(6)=4 since 7 - A089398(2^7 - 6) = 7 - 3 = 4.

%Y Cf. A089398, A089401.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Oct 30 2003