login
A089122
Triangle read by rows in which row n gives prime factors of n^2 + 1.
3
2, 5, 2, 5, 17, 2, 13, 37, 2, 5, 5, 13, 2, 41, 101, 2, 61, 5, 29, 2, 5, 17, 197, 2, 113, 257, 2, 5, 29, 5, 13, 2, 181, 401, 2, 13, 17, 5, 97, 2, 5, 53, 577, 2, 313, 677, 2, 5, 73, 5, 157, 2, 421, 17, 53, 2, 13, 37, 5, 41, 2, 5, 109, 13, 89, 2, 613, 1297, 2, 5, 137, 5, 17, 2, 761
OFFSET
1,1
COMMENTS
Prime factors taken without multiplicity. - Harvey P. Dale, Dec 02 2014
REFERENCES
H. Rademacher, Lectures on Elementary Number Theory, pp. 33-38.
LINKS
EXAMPLE
Triangle starts:
2;
5;
2, 5;
17;
2, 13;
37;
2, 5;
5, 13;
2, 41,;
101;
...
MATHEMATICA
Flatten[Table[Transpose[FactorInteger[n^2+1]][[1]], {n, 40}]] (* Harvey P. Dale, Dec 02 2014 *)
PROG
(PARI) allasqp1(m) = { for(a=1, m, y=a^2 + 1; f = factor(y); v = component(f, 1); ln = length(v); for(i=1, ln, print1(v[i]", ")) ) }
CROSSREFS
Cf. A002496.
Sequence in context: A016589 A151572 A166376 * A321577 A268789 A269920
KEYWORD
easy,nonn,tabf
AUTHOR
Cino Hilliard, Dec 05 2003
STATUS
approved