login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088878
Prime numbers p such that 3p - 2 is a prime.
45
3, 5, 7, 11, 13, 23, 37, 43, 47, 53, 61, 67, 71, 103, 113, 127, 137, 163, 167, 181, 191, 193, 211, 251, 257, 263, 271, 277, 293, 307, 313, 331, 337, 347, 373, 401, 431, 433, 443, 461, 467, 487, 491, 523, 541, 557, 587, 593, 601, 673, 677, 727, 751, 757, 761
OFFSET
1,1
COMMENTS
Indices of semiprime octagonal numbers. - Jonathan Vos Post, Feb 16 2006
Daughter primes of order 1. - Artur Jasinski, Dec 12 2007
A010051(3*a(n)-2) = 1. - Reinhard Zumkeller, Jul 02 2015
REFERENCES
M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997
LINKS
Eric Weisstein's World of Mathematics, Octagonal Number.
Eric Weisstein's World of Mathematics, Semiprime.
EXAMPLE
For p = 3, 3p - 2 = 7;
for p = 523, 3p - 2 = 1567.
MATHEMATICA
lst={}; Do[p=Prime[n]; If[PrimeQ[3*p-2], AppendTo[lst, p]], {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 22 2008 *)
n = 1; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, (Prime[k] + 2n)/(2n + 1)]], {k, 1, 500}]; a (* Artur Jasinski, Dec 12 2007 *)
Select[Prime[Range[150]], PrimeQ[3#-2]&] (* Harvey P. Dale, Feb 27 2024 *)
PROG
(Magma) [ p: p in PrimesUpTo(770) | IsPrime(3*p-2) ]; // Klaus Brockhaus, Dec 21 2008
(PARI) list(lim)=select(p->isprime(3*p-2), primes(primepi(lim))) \\ Charles R Greathouse IV, Jul 25 2011
(Haskell)
a088878 n = a088878_list !! (n-1)
a088878_list = filter ((== 1) . a010051' . subtract 2 . (* 3)) a000040_list
-- Reinhard Zumkeller, Jul 02 2015
KEYWORD
easy,nonn
AUTHOR
Giovanni Teofilatto, Nov 27 2003
EXTENSIONS
Corrected and extended by Ray Chandler, Dec 27 2003
Entry revised by N. J. A. Sloane, Nov 28 2006, Jul 08 2010
STATUS
approved