login
A088055
a(n) = n!*n^n - ((n^(n+1)-1)/(n-1) - 1) for n>1 with a(1)=0.
0
0, 2, 123, 5804, 371095, 33536334, 4149695921, 676438175160, 140586711200271, 36287988888888890, 11388728579602327129, 4270826370748686175140, 1886009588224061851054127, 968725766842917544760889030
OFFSET
1,2
COMMENTS
Original definition: a(n) = G(n) - A(n), where G(n) = Sum of the first n terms of a geometric progression with first term n and common ratio n. A(n) = Product of first n terms of an arithmetic progression with first term n and common difference n.
FORMULA
a(n) = A061711(n) - A031972(n) for n>1 with a(1)=0.
MAPLE
seq(`if`(n=1, 0, n!*n^n - ((n^(n+1)-1)/(n-1) - 1)), n=1..16); # Georg Fischer, Dec 09 2022
PROG
(PARI) a(n) = if (n==1, 0, n!*n^n - ((n^(n+1)-1)/(n-1) - 1)); \\ Michel Marcus, Dec 10 2022
CROSSREFS
Sequence in context: A249504 A230586 A024244 * A065705 A012870 A183720
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Sep 20 2003
EXTENSIONS
Corrected and extended by David Wasserman, Jun 27 2005
Edited by M. F. Hasler, Feb 12 2013
Formula negated by Georg Fischer, Dec 09 2022
STATUS
approved