login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087860
Expansion of e.g.f.: (1-exp(x/(x-1)))/(1-x).
1
0, 1, 3, 10, 39, 176, 905, 5244, 34111, 250480, 2108529, 20751380, 241315151, 3282366504, 50786289385, 865850559196, 15856276032255, 306665879765984, 6199863566817761, 130237717066988580, 2832527601333186319
OFFSET
0,3
LINKS
FORMULA
a(n) = n!*(1 - LaguerreL(n, 1)).
a(n) = 3*(n-1)*a(n-1) - (n-1)*(3*n - 5)*a(n-2) + (n-2)^2*(n-1)*a(n-3). - Vaclav Kotesovec, Nov 13 2017
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x) * (1 - BesselJ(0,2*sqrt(x))). - Ilya Gutkovskiy, Jul 17 2020
a(n) = n*n!*hypergeom([1 - n, 1], [2, 2], 1). - Peter Luschny, May 10 2021
a(n) ~ n! * (1 - exp(1/2)*cos(2*sqrt(n) - Pi/4) / (sqrt(Pi) * n^(1/4))). - Vaclav Kotesovec, May 10 2021
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(1-Exp[x/(x-1)])/(1-x), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Nov 27 2015 *)
PROG
(PARI) x='x+O('x^30); concat([0], Vec(serlaplace((1-exp(x/(x-1)))/(1-x)))) \\ G. C. Greubel, Feb 06 2018
(Magma) I:=[1, 3, 10]; [0] cat [n le 3 select I[n] else 3*(n-1)*Self(n-1) - (n-1)*(3*n-5)*Self(n-2) +(n-1)*(n-2)^2*Self(n-3): n in [1..30]];
CROSSREFS
Sequence in context: A343795 A305560 A074728 * A307593 A351144 A221973
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Oct 25 2003
EXTENSIONS
Definition clarified by Harvey P. Dale, Nov 27 2015
STATUS
approved