login
A087695
Numbers n such that n + 3 and n - 3 are both prime.
20
8, 10, 14, 16, 20, 26, 34, 40, 44, 50, 56, 64, 70, 76, 86, 100, 104, 106, 110, 134, 154, 160, 170, 176, 194, 196, 226, 230, 236, 254, 260, 266, 274, 280, 310, 314, 334, 350, 356, 370, 376, 386, 436, 446, 460, 464, 506, 544, 560, 566, 574, 590, 596
OFFSET
1,1
COMMENTS
A010051(a(n)-3) * A010051(a(n)+3) = 1. - Reinhard Zumkeller, Nov 17 2015
LINKS
FORMULA
a(n) = A046117(n) - 3.
MAPLE
ZL:=[]:for p from 1 to 600 do if (isprime(p) and isprime(p+6) ) then ZL:=[op(ZL), (p+(p+6))/2]; fi; od; print(ZL); # Zerinvary Lajos, Mar 07 2007
MATHEMATICA
lst={}; Do[If[PrimeQ[n-3]&&PrimeQ[n+3], AppendTo[lst, n]], {n, 10^3}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 08 2008 *)
Select[Range[600], AllTrue[#+{3, -3}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 06 2015 *)
PROG
(Haskell)
a087695 n = a087695_list !! (n-1)
a087695_list = filter
(\x -> a010051' (x - 3) == 1 && a010051' (x + 3) == 1) [2, 4 ..]
-- Reinhard Zumkeller, Nov 17 2015
(PARI) p=2; q=3; forprime(r=5, 1e3, if(q-p<7 && (q-p==6 || r-p==6), print1(p+3", ")); p=q; q=r) \\ Charles R Greathouse IV, May 22 2018
KEYWORD
easy,nonn
AUTHOR
Zak Seidov, Sep 27 2003
STATUS
approved