%I #11 Dec 10 2018 16:44:17
%S 1,3,41,443,48407,488503,5369101,585760421,59112952201,5969871262259,
%T 60289842144607,6625971340686661,66862611828312689,
%U 7348858316899935071,741572092872824776001,7489209511897247110721,82307816047700718867221
%N a(0) = 1, a(1) = 3, a(n) = smallest prime beginning with the sum of two previous terms.
%H Robert Israel, <a href="/A087544/b087544.txt">Table of n, a(n) for n = 0..322</a>
%e a(3) = 41, a(4) = 443, a(5) = 48407 is the smallest prime beginning with 41+443=484.
%p A[0]:= 1: A[1]:= 3:
%p for n from 2 to 20 do
%p s:= A[n-2]+A[n-1];
%p for d from 1 do
%p p:= nextprime(10^d*s);
%p if floor(p/10^d)=s then A[n]:= p; break fi
%p od
%p od:
%p seq(A[n],n=0..20); # _Robert Israel_, Dec 10 2018
%t a[0] = 1; a[1] = 3; a[n_] := a[n] = Module[{s = a[n - 1] + a[n - 2]}, Do[p = 10^d*s; While[! PrimeQ[p], p = NextPrime[p]]; If[Floor[p/10^d] == s, Break[]], {d, 1, 20}]; p]; Array[a, 10, 0] (* _Amiram Eldar_, Dec 10 2018 from the Maple code *)
%Y Cf. A087541, A087542, A087543.
%K base,nonn
%O 0,2
%A _Amarnath Murthy_, Sep 13 2003
%E More terms from _Ray Chandler_, Sep 23 2003