login
A087339
Numbers k such that both the sum of the digits of k and 1 plus the product of its digits are primes.
2
2, 11, 12, 14, 16, 21, 23, 25, 29, 32, 34, 41, 43, 47, 49, 52, 56, 58, 61, 65, 67, 74, 76, 85, 89, 92, 94, 98, 111, 122, 128, 166, 182, 212, 218, 221, 223, 227, 229, 232, 236, 245, 254, 256, 263, 265, 269, 272, 278, 281, 287, 292, 296, 322, 326, 346, 362, 364, 388
OFFSET
1,1
COMMENTS
Sequence is infinite. Proof: (10^p-1)/9 is a term if p is a prime. The sum of the digits = p and the product of digits + 1 = 2. Conjecture: There are infinitely many terms not of the form (10^p-1)/9.
LINKS
MATHEMATICA
f[n_] := Block[{d = IntegerDigits[n]}, PrimeQ[Plus @@ d] && PrimeQ[1 + Times @@ d]]; Select[ Range[424], f[ # ] & ]
Select[Range[400], AllTrue[{Total[IntegerDigits[#]], Times @@ IntegerDigits[ #]+1}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jun 24 2017 *)
CROSSREFS
Cf. A087340.
Sequence in context: A175414 A359220 A059192 * A345922 A216213 A160948
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Sep 06 2003
EXTENSIONS
More terms from Robert G. Wilson v, Sep 07 2003
STATUS
approved