OFFSET
0,1
COMMENTS
Number of ways to tile an n-bracelet with two types of colored squares and four types of colored dominoes.
Inverse binomial transform of even Lucas numbers (A014448).
From L. Edson Jeffery, Apr 25 2011: (Start)
Let A be the unit-primitive matrix (see [Jeffery])
A=A_(10,4)=
(0 0 0 0 1)
(0 0 0 2 0)
(0 0 2 0 1)
(0 2 0 2 0)
(2 0 2 0 1).
Then a(n)=(Trace(A^n)-1)/2. Also a(n)=Trace((2*A_(5,1))^n), where A_(5,1)=[(0,1); (1,1)] is also a unit-primitive matrix. (End)
Also the number of connected dominating sets in the n-sun graph for n >= 3. - Eric W. Weisstein, May 02 2017
Also the number of total dominating sets in the n-sun graph for n >= 3. - Eric W. Weisstein, Apr 27 2018
REFERENCES
Arthur T. Benjamin and Jennifer J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, identity 237, p. 132.
LINKS
L. Edson Jeffery, Unit-primitive matrices
Eric Weisstein's World of Mathematics, Connected Dominating Set.
Eric Weisstein's World of Mathematics, Sun Graph.
Eric Weisstein's World of Mathematics, Total Dominating Set.
Index entries for linear recurrences with constant coefficients, signature (2,4).
FORMULA
a(n) = 2*A084057(n).
Recurrence: a(n) = 2a(n-1) + 4a(n-2), a(0)=2, a(1)=2.
G.f.: 2*(1-x)/(1-2*x-4*x^2).
a(n) = (1+sqrt(5))^n + (1-sqrt(5))^n.
For n>=2, a(n) = Trace of matrix [({2,2},{2,0})^n]. - Artur Jasinski, Jan 09 2007
a(n) = (5*A052899(n)-1)/2. - L. Edson Jeffery, Apr 25 2011
a(n) = [x^n] ( 1 + x + sqrt(1 + 2*x + 5*x^2) )^n for n >= 1. - Peter Bala, Jun 23 2015
Sum_{n>=1} 1/a(n) = (1/2) * A269992. - Amiram Eldar, Nov 17 2020
From Amiram Eldar, Jan 15 2022: (Start)
a(n) == 2 (mod 10).
a(n) = 5 * A014334(n) + 2.
a(n) = 10 * A014335(n) + 2. (End)
MATHEMATICA
Table[Tr[MatrixPower[{{2, 2}, {2, 0}}, x]], {x, 1, 20}] (* Artur Jasinski, Jan 09 2007 *)
Join[{2}, Table[2^n LucasL[n], {n, 20}]] (* Eric W. Weisstein, May 02 2017 *)
Join[{2}, 2^# LucasL[#] & [Range[20]]] (* Eric W. Weisstein, May 02 2017 *)
LinearRecurrence[{2, 4}, {2, 12}, {0, 20}] (* Eric W. Weisstein, Apr 27 2018 *)
CoefficientList[Series[(2 (-1 + x))/(-1 + 2 x + 4 x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 27 2018 *)
PROG
(Sage) [lucas_number2(n, 2, -4) for n in range(0, 25)] # Zerinvary Lajos, Apr 30 2009
(PARI) for(n=0, 30, print1(if(n==0, 2, 2^n*(fibonacci(n+1) + fibonacci(n-1))), ", ")) \\ G. C. Greubel, Dec 18 2017
(PARI) first(n) = Vec(2*(1-x)/(1-2*x-4*x^2) + O(x^n)) \\ Iain Fox, Dec 19 2017
(Magma) [2] cat [2^n*Lucas(n): n in [1..30]]; // G. C. Greubel, Dec 18 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Aug 16 2003
EXTENSIONS
Edited by Ralf Stephan, Feb 08 2005
STATUS
approved