login
A087103
Smallest jumping champion for prime(n).
4
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6, 6, 6, 6, 2, 2, 2, 2, 2, 6, 6, 6, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6
OFFSET
2,3
COMMENTS
A number is called a jumping champion for n, if it is the most frequently occurring difference between consecutive primes <= n;
there are occasionally several jumping champions: see A087102; A087104(n) is the greatest jumping champion for prime(n).
LINKS
A. Odlyzko, M. Rubinstein and M. Wolf, Jumping Champions
A. Odlyzko, M. Rubinstein and M. Wolf, Jumping Champions, Experimental Math., 8 (no. 2) (1999).
Eric Weisstein's World of Mathematics, Jumping Champion
MATHEMATICA
d=Table[0, {100}]; p=2; Table[q=NextPrime[p]; d[[q-p]]++; p=q; Position[d, Max[d]][[1, 1]], {1000}]
CROSSREFS
Sequence in context: A185715 A111893 A121902 * A287091 A204551 A292563
KEYWORD
nonn,changed
AUTHOR
Reinhard Zumkeller, Aug 10 2003
STATUS
approved