login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086873
Triangle read by rows in which row n >= 1 gives coefficients in expansion of the polynomial Sum_{k=1..n} (1/n)*binomial(n,k)*binomial(n,k-1)*x^(2k)*(1+x)^(2n-2k) / x^2 in powers of x.
1
1, 1, 2, 2, 1, 4, 9, 10, 5, 1, 6, 21, 44, 57, 42, 14, 1, 8, 38, 116, 240, 336, 308, 168, 42, 1, 10, 60, 240, 680, 1392, 2060, 2160, 1530, 660, 132, 1, 12, 87, 430, 1545, 4152, 8449, 13014, 14985, 12540, 7227, 2574, 429, 1, 14, 119, 700, 3045, 10122, 26173, 53048
OFFSET
1,3
COMMENTS
Row n has 2n-1 terms.
LINKS
C. Coker, Enumerating a class of lattice paths, Discrete Math., 271 (2003), 13-28.
EXAMPLE
For n=3 the polynomial is 1 + 4x + 9x^2 + 10x^3 + 5x^4.
1;
1, 2, 2;
1, 4, 9, 10, 5;
1, 6, 21, 44, 57, 42, 14;
1, 8, 38, 116, 240, 336, 308, 168, 42;
1, 10, 60, 240, 680, 1392, 2060, 2160, 1530, 660, 132;
1, 12, 87, 430, 1545, 4152, 8449, 13014, 14985, 12540, 7227, 2574, 429;
MAPLE
j := 0:f := n->sum(binomial(n, k)*binomial(n, k-1)/n*x^(2*k)*(1+x)^(2*n-2*k), k=1..n): for n from 1 to 15 do p := expand(f(n)/x^2):for l from 0 to 2*n-2 do j := j+1: a[j] := coeff(p, x, l):od:od:seq(a[l], l=1..j); # Sascha Kurz
PROG
(PARI) for(n=1, 8, p=sum(k=1, n, (1/n)*binomial(n, k)*binomial(n, k-1)*x^(2*k)*(1+x)^(2*n-2*k))/x^2; for(i=1, 2*n-1, print1(polcoeff(p, i-1) ", "); ); print; ); \\ Ray Chandler, Sep 17 2003
CROSSREFS
A059231 gives row sums.
Sequence in context: A295687 A087854 A185041 * A101560 A307456 A291260
KEYWORD
nonn,easy,tabf
AUTHOR
N. J. A. Sloane, Sep 16 2003
EXTENSIONS
More terms from Vladeta Jovovic and Ray Chandler, Sep 17 2003
STATUS
approved