login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086870
Primes equal to a product of twin primes minus 1 divided by 2.
6
7, 17, 71, 449, 881, 2591, 9521, 39761, 106721, 179999, 206081, 342791, 388961, 596231, 847601, 1292831, 2268449, 2571911, 2836961, 3612671, 6223391, 6329681, 6415361, 8520191, 8946449, 9409121, 10342151, 12550049, 16485281, 18800711
OFFSET
1,1
COMMENTS
From Jason Kimberley, Oct 22 2015 (Start)
Prime elements of A120876.
For each p in this list, A001221(2p) = A001222(2p) = A001221(2p+1) = A001222(2p+1) = 2.
2*a(n) is a subsequence of A103533. They first differ when 313619 is not in this sequence, but 2*313619 = 627238 = A103533(12).
(End)
LINKS
FORMULA
Primes of the form (t1*t2-1)/2, where t1, t2 are twin primes.
EXAMPLE
t1 = 71,t2 = 73, (71*73-1)/2 = 5182/2 = 2591 = prime.
MATHEMATICA
Select[(Times[#, # + 2] - 1)/2 &@ Select[Prime@ Range@ 1000, PrimeQ[# + 2] &], PrimeQ] (* Michael De Vlieger, Nov 06 2015 *)
PROG
(PARI) for(n=1, 1e3, if(prime(n+1)-prime(n)==2 && isprime(k=(prime(n)*prime(n+1)-1)/2), print1(k", "))) \\ Altug Alkan, Nov 06 2015
CROSSREFS
Sequence in context: A034054 A120876 A216073 * A107693 A217717 A122528
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Aug 20 2003
STATUS
approved