login
A086819
Decimal expansion of Lochs's constant.
1
9, 7, 0, 2, 7, 0, 1, 1, 4, 3, 9, 2, 0, 3, 3, 9, 2, 5, 7, 4, 0, 2, 5, 6, 0, 1, 9, 2, 1, 0, 0, 1, 0, 8, 3, 3, 7, 8, 1, 2, 8, 4, 7, 0, 4, 7, 8, 5, 1, 6, 1, 2, 8, 6, 6, 1, 0, 3, 5, 0, 5, 2, 9, 9, 3, 1, 2, 5, 4, 1, 9, 9, 8, 9, 1, 7, 3, 7, 0, 4, 8, 0, 3, 6, 2, 1, 2, 6, 7, 4, 9, 0, 8, 0, 2, 9, 0, 2, 6, 4, 6, 9, 2, 4
OFFSET
0,1
COMMENTS
Named after the Austrian mathematician Gustav Emil Maria Johannes Lochs (1907-1988). - Amiram Eldar, Feb 05 2022
LINKS
Dan Lascu and Gabriela Ileana Sebe, Comparison of various continued fraction expansions: a Lochs-type approach, arXiv:2005.00380 [math.NT], 2020.
Gustav Lochs, Vergleich der Genauigkeit von Dezimalbruch und Kettenbruch, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, Volume 27, Issue 1-2 (April 1964), pp. 142-144.
Eric Weisstein's World of Mathematics, Lochs' Constant.
Eric Weisstein's World of Mathematics, Lochs' Theorem.
FORMULA
Equals 6*log(2)*log(10)/Pi^2.
Equals 1/A062542 = 1/(2*A240995). - Amiram Eldar, Feb 05 2022
EXAMPLE
0.97027011439203392574025601921001083378128470478516...
MATHEMATICA
RealDigits[(6*Log[2]Log[10])/Pi^2, 10, 120][[1]] (* Harvey P. Dale, Jul 13 2019 *)
PROG
(PARI) 6*log(2)*log(10)/Pi^2 \\ Michel Marcus, Oct 17 2014
CROSSREFS
Sequence in context: A185364 A085678 A256687 * A019885 A199078 A194098
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, Aug 06 2003
STATUS
approved