login
A086663
Number of non-attacking knights on an n X n board with all non-perimeteral squares removed.
0
1, 4, 4, 8, 12, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228
OFFSET
1,2
COMMENTS
The basic maximal arrangement is with a knight in each corner and any centers of edges. The remaining 16 squares are coupled together, so only half may be used.
FORMULA
a(n)=4*(n-3) for n>5.
G.f.: x*(x+1)*(4*x^5-8*x^4+8*x^3-4*x^2+x+1)/(x-1)^2. [Colin Barker, Jan 09 2013]
EXAMPLE
One of the maximal arrangements for a(8):
k-kkkk-k
-......-
k......k
k......k
k......k
k......k
-......-
k-kkkk-k
PROG
(PARI) a(n)=local(r); r=4+4*max(0, n-6); if (n>3, r+=8); if (n==4, r-=4); r for (i=2, 40, print1(a(i)", "))
CROSSREFS
Sequence in context: A004024 A292276 A278083 * A003829 A194697 A194696
KEYWORD
nonn,easy
AUTHOR
Jon Perry, Jul 27 2003
EXTENSIONS
More terms from David Wasserman, Mar 28 2005
STATUS
approved