login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086376
Maximal coefficient of the polynomial (1-x)*(1-x^2)*...*(1-x^n).
18
1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 4, 3, 3, 4, 6, 5, 6, 7, 8, 8, 10, 11, 16, 16, 18, 21, 28, 29, 34, 41, 50, 56, 66, 80, 100, 114, 131, 158, 196, 225, 263, 320, 388, 455, 532, 644, 786, 921, 1083, 1321, 1600, 1891, 2218, 2711, 3280, 3895, 4588, 5591, 6780, 8051, 9519, 11624
OFFSET
0,5
LINKS
Steven R. Finch, Signum equations and extremal coefficients, February 7, 2009. [Cached copy, with permission of the author]
J. W. Meijer and M. Nepveu, Euler's ship on the Pentagonal Sea, Acta Nova, Volume 4, No.1, December 2008. pp. 176-187. [From Johannes W. Meijer, Jun 21 2010]
E. M. Wright, A closer estimate for a restricted partition function, Q. J. Math. 15 (1964) 283-287.
MAPLE
A086376 := proc(n)
g := expand(mul( 1-x^k, k=1..n) );
convert(PolynomialTools[CoefficientVector](g, x), list):
max(%);
end proc:
seq(A086376(n), n=0..60) ; # R. J. Mathar, Jun 01 2011
MATHEMATICA
b[0] = 1; b[n_] := b[n] = b[n-1]*(1-x^n) // Expand;
a[n_] := CoefficientList[b[n], x] // Max;
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 13 2017 *)
PROG
(PARI) a(n)=vecmax(Vec(prod(k=1, n, 1-x^k)));
vector(100, n, a(n-1)) \\ Joerg Arndt, Jan 31 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 07 2003
EXTENSIONS
More terms from Sascha Kurz, Sep 22 2003
a(0)=1 prepended by Alois P. Heinz, Apr 12 2017
STATUS
approved