login
A086231
Decimal expansion of value of Watson's integral.
14
1, 5, 1, 6, 3, 8, 6, 0, 5, 9, 1, 5, 1, 9, 7, 8, 0, 1, 8, 1, 5, 6, 0, 1, 2, 1, 5, 9, 6, 8, 1, 4, 2, 0, 7, 7, 9, 9, 5, 5, 3, 8, 7, 0, 4, 4, 4, 5, 2, 2, 6, 2, 6, 7, 6, 5, 6, 6, 9, 8, 0, 4, 6, 3, 6, 5, 8, 0, 8, 6, 3, 2, 0, 3, 5, 3, 5, 2, 1, 4, 5, 0, 4, 0, 1, 6, 1, 1, 7, 4, 1, 2, 0, 9, 6, 8, 8, 1, 1, 3, 9, 2
OFFSET
1,2
LINKS
M. Lawrence Glasser and I. John Zucker, Extended Watson integrals for the cubic lattices, Proceedings of the National Academy of Sciences, Vol. 74, No. 5 (1977), pp. 1800-1801, alternative link.
Anthony J. Guttmann, Lattice Green's functions in all dimensions, J. Phys. A.: Math. Theor., Vol. 43, No. 30 (2010) 305205.
George N. Watson, Three triple integrals, The Quarterly Journal of Mathematics, Vol. os-10, No. 1 (1939), pp. 266-276.
Eric Weisstein's World of Mathematics, Pólya's Random Walk Constants.
FORMULA
Equals (sqrt(3)-1)*(gamma(1/24)*gamma(11/24))^2/(32*Pi^3). - G. C. Greubel, Jan 07 2018
Equals 1/(1 - A086230). - Amiram Eldar, Aug 28 2020
Equals Sum_{k>=0} A002896(k)/36^k. - Vaclav Kotesovec, Apr 23 2023
EXAMPLE
1.51638605915197801815601215968142077995538704445226267656698...
MAPLE
evalf((sqrt(3)-1)*(GAMMA(1/24)*GAMMA(11/24))^2 / (32*Pi^3), 120); # Vaclav Kotesovec, Sep 16 2014
MATHEMATICA
RealDigits[ N[ Sqrt[6]/32/Pi^3*Gamma[1/24]*Gamma[5/24]*Gamma[7/24]*Gamma[11/24], 102]][[1]] (* Jean-François Alcover, Nov 12 2012, after Eric W. Weisstein *)
PROG
(PARI) (sqrt(3)-1)*(gamma(1/24)*gamma(11/24))^2 / (32*Pi^3) \\ Altug Alkan, Apr 13 2016
(Magma) C<i> := ComplexField(); (Sqrt(3)-1)*(Gamma(1/24)*Gamma(11/24))^2/(32*Pi(C)^3); // G. C. Greubel, Jan 07 2018
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jul 12 2003
STATUS
approved